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ADVE¥CE RTEITRICTYWD RLPORT

NERICAL EVALUATION OF THE e-TNTEGRAL OCCURRING IN
TEE THEODORSTN ARBITRARY AIRFOIL POTENTIAL TIF.ORY

By Irven Nafmen
STAIILRY

A more precise method of evalvating the €-integral
occurring in the arbitrarv airfoll theory of Theodorsen
(LIACA Reps. Mos. 411 anrd 452) is developed by reteining
nigher order terms ina the Teylor exhansion and by use
of Simpson's rule. Formulas are given for routine calcu-
lation of the é-lntegral and for the necessary compu-
tetionel coefficienta. The computational coefficlents
are tabulated for a 40-point Sivision of the range of
integration from O to 2w. With no 1increase in corpu-
tatlionsl work the systematic error in the numerical
value of € 13 reduced from the order of 1 percent to
approximately 0.1 percent.

THTRODUCTION

The solution of the general problem by means of
conforral transformation for the flow ebout an arbitrary
airfoil (references 1 end 2), a symmetrical lattice
(reference 3), and a biplane (reference 4) involves the
determination of the inmeginary part of a conmplex trans-
formation function, given the real part. as shown in
references 1 and 2 the real part may be sexpanded in a
Fourler series and the imaginary part is the conjugate
Fourier series. It is also shown in these references
that the Imaglnary part € may be obtained from the
real part ¥ by the following functional equation:

21
- t
e(q!) = -é% Y(®) cot ELETEL-dw (1)

0
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This integrel occurs fregquently in conformal-
transformation problens involving the evaluation of the
functlons on the circle. A procedure for the numerical
evaluatlon of this Integral is given in references 1
end 2, This method, which 1s currently in use at LMAL,
€lves an error of about 1.5 psrcent for a 40-point
divislion of the range of integretion. An improvement
in the eccuracy is therefore very deslirable, particulerly
if the labor involved 1s not increased. 4 revised method
fiven herein is found to involve a little less work than
that previously required and to give an error of only
about 0.1 percent. Constants for f13e in this more vre-
cise method have been computed and are presented 1in
table T.

EVALUATICH OF THD c¢~-INTTGRAL

Tke evaluation’'of the &-integral is complicated by
the discontinulty at @ = @f., This difficulty may be
surmounted by a separate solution across the di=con-
tinuity. Vihen s = @ - ¢! 1is substituted in equation (1)

1 2w-Q! 8
€(@1) = -5 J[ Y(o! + 8) cot 7 das
-t

or, because of the periodicity of this function,

.y
€(er) =~"§,; [2 Y(®9! + s} cot '.3' ds (2)
J
-3

The discoatinuity no~ ccceurs at s = 0, For purposes of
nurerical evaluatfon chis intezrei mar be broken up a&s
Tollovwrs:

rﬁs 2n-s
e(gr) = -2%[; (@' + &) oot 5 de +f Y(Q' + 8) cot %dﬂ
8

SR
=|€1-|-£2 . (3)
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whers
~3
€ E'%ﬁ J v(g! + 8) cot % ds (4)
-3
end
] 21-8
€ = -7 vt + 8) cot 5 ds (8)
8

Evaluation of ¢€;.- The Ifirst iutegral € includes

the dlscontinuity and the limit 8 r.ay be taken as some
convenient small value. By & Taylor cerles expansion the
integral is easily evaluabted aa follows:

2
V(o + 8) = W(@1) + ¥ (1) + YT (@1) + Zpm (1) + ...

Then thils expansion is substituted in equation (4) the
Integrals contalning the even-ordered derivatives are
found to be ldentically zero. Equation (4) then becomes

8 9 .
elz-gl?rll fscgt%d&+%—'}'—vjssscot%ds+...} 6)

-5

vhere the derlvatives are evaluated at ©¢!'. The Taylor
expansion for cot % is

33 ™~ esse

cot " =5

wjo

ojw
o111
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and equation (6) is thus obtained as

gl % g2 al
€1= —-2— 43¥rt 1-3E—:'3-666_“'/+_S wr (l-gﬁ—m-...

S ¥ 53'2 s’ . VII 72
-I-m\p (1-.E-4-_..->+-8—-8_r(}‘|, '1_o§- +"' (7)

Evaluation of ¢€p.~ The second integral €o (equu~

tion (£)) may b2 rearrengsed for convenlience in numerical
calculation as follows:

F 27~8
fW(m' + 8) cot 73- c'ls+‘[r V(e +8) cot % ds
8

i 8
f\lr(@' +8) cot % ds+ L V(®! - 8) cot -% ds:\
3

%{f"ﬁy(ou 8) - V(' - 8) ] cot § ds (8)
#5' :

€2=

n
=t'|"‘

o

where -3 Yras been substituted fcr s in the second
Integral and the limits have bacr. rsavrangsl accordingly.

NUMCRICAL EBTICZ3

_:1_-'_--;&__'__*_"__y__t"”-e'lce lo— Im 1< Ie-m'ce 1 %ty Interval
0 to <. L& i7-und Into n e,n... S03rs ol racnalinde
21 ’n (n 1s ¢4 e'rﬂ-n syt . e \ "-u.(’$ ol 1 (re
desi -

garted ‘~;'—_‘_; Von s ceos Woas by Vg, eee, "’r

N g
whers V5 1s tos valus of ¥ as ®= Q@' end ¥ ; =Vp
g 2
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iz the value at @ = ¢! . The integrations are per-
formed over intervals of width 2uw/n with the VY values
at the midpoint of ths interval. The renge of integra-
tion for €1 15 from s = -t/n to s = w/n and for

€o from m/n to 217--;‘-17..

The first integral ¢€; 18 evaluated by retaining
only the first-order terms in s,

where the slope Vg' 1is dstermined graphically at v,,
that 1s, at @ = Q! (s = 0).

The second integral e; 1s corposed of the svm orf
integrals across each interval

2k+1

n-1 v
— n

‘-2'—"2_11?2 [2?1 ¥(Q! + 8) cot 5 ds
k=1 —r'l;—ﬂ’

The functlion WV does not change much across the
Interval and 1s therefore approximated by use of the

value at the midpoint ¥y = w(cp' + -2—1;1]‘—-") Then,

| a2 21;+1
€2 =-%% Ve cot -g- ds
£v 2e-1
1 & 8in 212(:;111
"tw g Ve 18 T

k=1 sin on
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or, by equaticn (8), with Wn—k.= Vo

n/2 |
g E-% > a(¥i - V) (10)

k=1
vkere
~
2k + 1
sin g
ax = log Pn
ein 2= 1y
2n
X (11)
a, = 0
2 »
The complete integral 1s given by € = €, + €5, or
.n/2 = ]
e= B e > a(ly - V) (12)
= =9¢7% T k(Y - Vox
k=1

Values of the constants &) were glven in reference 1

for n = 10 and in reference 2 for n = 20. Revised
values for these constants, together with those for
n = 40, are given in table II.

Improved nethod.- The numerical accuracy of the
evaluation of the €-integral wlll be showvm to be
Improved by the following methods The interval 0 to 2w
is divided into n equal parts and the ¥ values arc
designated as in the previous section. The second
integral e¢; 1s evaluated by Simpson's rule from V,

to ¥y.3 {¥n_3 =V_1). The range of integration for ¢,

1s therefore twice as large as that in the previous sec-
ticn, that 18, 8 = -2w/n to 2n/n. The approximation
in which only the first-order term or equation (7) is
used is insufficlent and the higher derivativss must be
used., These derivatives are most conveniently obtained
by numerical differentlation.
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The ilewten-Stirling forrmulas for derivatives (refer-
euce 5, p. 75) are

‘j
1.3 1
\U = ¥ - — — -
st ol 66 v + 5065w .o
sBym= 6% - o5y + ... S (13)
stv = 650 - oee
iy

where s = tsbular interval (2w/n). The mean central dif-
Terences 6V can be expressed in temis of the tabular
valves as

20V = 'llfl - \lf_l

&
]

Vo - 2y + 2‘!’_1 - V.o > (14)

2850 = Uz - 4¥p + BYy - SU_ + 4V_o - =3

The substitutiorn of relations (12) in eguation (7)
glves

_ ].J’ a2 s _ 3.{2 g2
El = igﬁlf&y<' -~ Tﬁ - 150 - g90 - 28 ¢ § - 576 - sao

2
5,({13 8
+ 25 W 450 - 1512 - -oo) - eso (15)
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The further substitution of relations (14) in equa-
tion (15) gives

El = g—%ﬂ[l - _1) (2 + g 19 + ..-)
g g® 2 5
- - . - -181+-]-.-5-+§I+ ..-)- --o]

~(¥g - v_2) (2+é§—+...)-52(§%3+3,]7'§+...) - ]

+(\l’5'\"-5):(1%96+"-)-Bz(ﬁg+--->- -}

or

ep ¥ o3(¥oy - V1) + bV - V) + b3(V_z + ¥5) (16)
vhere
19 1
b1 = [2+§ - ({5 + B+ i) -]

1 (239 _ 167 2_-)

T

= B\ 90 ~ 2520 °
2
bo "2%?[(’@' + -228—5) - 82(—]-'— —.71—->- ] . > (17)

= _1/ss8 2
"ﬁé‘é’é"l‘ﬁss - )

O

be = Lf20 _ _s?
3 = Z3\g50 -~ 151 ~ "
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The secord Integral €, 13 evaluated by Sirpson's
rule from ¥y to WY, 4

22 12 w \ 2
€2 = --2Tr Fur:Eyl cot E + 4\-'2 cot —11
s fg 1§ ) n-1
+ O "'_', cot ? + o040 + \in_l cot Tﬂ]

or, by cquation (8), with V.. = ¥y

n/2
0 2 > op(Vy = Vi (13)
ey Sl )
where
' “~
1l ¥
ey = 55 oot 7
- - i N kr .
- £ g 0% o > (13)
tn = 9
4 <

where (except in the first term) a =2 for k odd and
a=4 Tfor k even. The conmplete integral 1s given by
€= €, + € or
1 2
/2
€ = A-.,.(\.'.‘__- - Uy, (20)
2 (¥ - Y _
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where

Ak = by t+ e (21)
Values of Ay for =n = 40 are given in table I.
ACCURACY OF FVALULTION

The accuracy of the two methods of evaluation
described may be determired by integrating various
harmonics. The results are presented as ratios of the
Integrated value to tha correct value s0 that a valve
of unity 1s a correct evaluation. Values of this ratilo
for the harmonics cre:

Harmonlc 40-point method 40-point present

of reference 1 method
1l 1.01424 0.£2977
2 1.02662 1.60044
3 1.03700 . £2940
4 1.04547 1.00060
5 1.05280 . 99340
10 1.06112 . 25420

-

Inasmuch as the higher harmonics gener:ily enter
in a much smaller proportion than the lower ones for
such contours as are encountered for alrfoll shapes, the
error of the 40-point method of relerence 1 1z of the
order of 1.5 vercent, whereas that of the new method
presented herein ls approximately 0.1 percent.

Iangley Memorial Aeronautical Leboratory,
National Advisory Cormittee for Aeronautics,
Langley Field, Va,
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TABLE I.- VALUES OF A, FOR USE WITH EQUATION (20)

A, A
K k X . S
n = 40 ] n = 40
[}
1 0.52827 11 0.01423
2 .148%24 12 .02422
3 .07614 13 .01021
4 .10259 |, 14 .01698
5 04024 It 18 ) .00€90
6 66542 1 16 .01083
7 .N2720 i v .00400
8 . 04588 1 .00528
9 .01651 19 . 20066
10 L03233 2 )

TABLE II.- VALUDS OF ey FGR USL WITH EQUATION (12);
Y
METEOD OF ROFEREWCES 1 AND 2

k o
. n =10 n = 20 n = 40

1 1.06544 + 1.09037 ! 1.006E€
2 44311 o «4942€ .50671 -
3 23117 T 81141 «33028 *
4. «10302 ¢ (21750 " 24303 ~
5 0 I L1B77E .19028 -
€ c11440 ¢ «134E3
7 - 08020 12341
8 . 05115 . .1002

9 T, 02493 .09207
i 3 .C7362 I
31 038714 *
1 LOETIY ¢
15 04316 -
14 .C4004& -
£ 03255
(e .C2553
17 _ .C1337 °
18 .01248% -
-8 .OC31G 1
290 0o




